Characterization of surface accumulation and release of nanosilica during irradiation of polymer nanocomposites by ultraviolet light.

نویسندگان

  • T Nguyen
  • B Pellegrin
  • C Bernard
  • S Rabb
  • P Stuztman
  • J M Gorham
  • X Gu
  • L L Yu
  • J W Chin
چکیده

Polymer nanocomposites are increasingly used in applications that are subjected to harsh environments. Owing to polymer's susceptibility to photodegradation, nanofillers in a polymer nanocomposite may be released into the environments during the composite's life cycle. Such release potentially poses an environmental health and safety problem and may hinder commercialization of these advanced materials. This study investigated the fate and release of nanosilica from epoxy/nanosilica composites. Specially-designed holders containing nanocomposite specimens were irradiated with UV light in a well-controlled environmental chamber. UV irradiated samples were removed for measurements of polymer chemical degradation, mass loss, surface morphology, nanosilica accumulation on the composite surface, and nanosilica release. Epoxy matrix underwent rapid photodegradation, resulting in substantial accumulation of silica nanofillers on the composite surface and also release from the composite. A conceptual model for surface accumulation and release of nanosilica during UV irradiation of epoxy nanocomposites is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of UV irradiation on multiwall carbon

16 Multiwall carbon nanotubes (MWCNTs) are nanofillers used in consumer and structural 17 polymeric products to enhance a variety of properties. Under weathering, the polymer matrix will 18 degrade and the nanofillers may be released from the products potentially impacting ecological or 19 human health. In this study, we investigated the degradation of a 0.72 % (by mass) 20 MWCNT/amine-cured ep...

متن کامل

Antibacterial response of Cd-TiO2/PEG/folic acid nanocomposite under ultraviolet, visible light, or ultrasonic irradiation

Synthesis and characterization of Cd-TiO2/PEG/FA nanocomposite as a biomaterial is the main aim of this research. Cd-doped TiO2 nanoparticles (NPs) were synthesized by solvothermal assisted sol-gel method. Then, polyethylene glycol (PEG) was added to the as-synthesized NPs in order to modify their surface and to prevent agglomeration. In the next step, folic acid (FA) was conjugated to Cd-TiO2/...

متن کامل

Hydrothermal synthesis of photo-catalyst and photo-luminescence polymer-CdS flexible nanocomposites

CdS nanoparticles are II-VI group semiconductor in nature with suitable band gap for photoluminescence and photo-catalyst applications. CdS nanostructures were synthesized via a facile precipitation method in the presence of green capping agents such as starch, glucose, gelatin, salicylic acid in the green solvent of water. The influence of concentration, surfactant, precipitating agent on the ...

متن کامل

Structural and Optical Characterization of ZnO-Graphene Nanocomposite Quantum Dots

In this research, zinc oxide quantum dots and graphene nanocomposites were synthesized via two different methods; In the first (direct) method, ZnO-graphene Nanocomposites were made mixing the synthesized zinc oxide and graphene. In the second (indirect) method, zinc nitrate, graphene, and sodium hydroxide were used to made ZnO-graphene Nanocomposites. XRD, FTIR and Raman spectroscopy analyses ...

متن کامل

Different PVA-Hydroxypropyl Guar Gum Irradiated Nanosilica Composite Membranes for Model Drug Delivery Device

   High strength and elastic biodegradable membranes are of great demand in modern technology. Similar membranes have been developed by irradiating different weight poly (vinyl alcohol) (PVA) – hydroxypropyl guar gum (HPG) blends and followed by combining with ex situ nanosilica. Polarized light microscopic (PLM) study indicates that electron beam irradiation produced crosslinks and develop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 12 8  شماره 

صفحات  -

تاریخ انتشار 2012